Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice.

نویسندگان

  • Andrea A Domenighetti
  • Pao-Hsien Chu
  • Tongbin Wu
  • Farah Sheikh
  • David S Gokhin
  • Ling T Guo
  • Ziyou Cui
  • Angela K Peter
  • Danos C Christodoulou
  • Michael G Parfenov
  • Joshua M Gorham
  • Daniel Y Li
  • Indroneal Banerjee
  • Xianyin Lai
  • Frank A Witzmann
  • Christine E Seidman
  • Jonathan G Seidman
  • Aldrin V Gomes
  • G Diane Shelton
  • Richard L Lieber
  • Ju Chen
چکیده

Recent human genetic studies have provided evidences that sporadic or inherited missense mutations in four-and-a-half LIM domain protein 1 (FHL1), resulting in alterations in FHL1 protein expression, are associated with rare congenital myopathies, including reducing body myopathy and Emery-Dreifuss muscular dystrophy. However, it remains to be clarified whether mutations in FHL1 cause skeletal muscle remodeling owing to gain- or loss of FHL1 function. In this study, we used FHL1-null mice lacking global FHL1 expression to evaluate loss-of-function effects on skeletal muscle homeostasis. Histological and functional analyses of soleus, tibialis anterior and sternohyoideus muscles demonstrated that FHL1-null mice develop an age-dependent myopathy associated with myofibrillar and intermyofibrillar (mitochondrial and sarcoplasmic reticulum) disorganization, impaired muscle oxidative capacity and increased autophagic activity. A longitudinal study established decreased survival rates in FHL1-null mice, associated with age-dependent impairment of muscle contractile function and a significantly lower exercise capacity. Analysis of primary myoblasts isolated from FHL1-null muscles demonstrated early muscle fiber differentiation and maturation defects, which could be rescued by re-expression of the FHL1A isoform, highlighting that FHL1A is necessary for proper muscle fiber differentiation and maturation in vitro. Overall, our data show that loss of FHL1 function leads to myopathy in vivo and suggest that loss of function of FHL1 may be one of the mechanisms underlying muscle dystrophy in patients with FHL1 mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle.

Disruptions in the use of skeletal muscle lead to muscle atrophy. After short periods of disuse, muscle atrophy is reversible, and even after prolonged periods of inactivity, myofiber degeneration is uncommon. The pathways that regulate atrophy, initiated either by peripheral nerve damage, immobilization, aging, catabolic steroids, or cancer cachexia, however, are poorly understood. Previously,...

متن کامل

A zebrafish model for FHL1-opathy reveals loss-of-function effects of human FHL1 mutations

Missense mutations in the four and a half LIM domain 1 (FHL1) gene were found to cause X-linked inherited myopathies of both skeletal and heart muscle. However, the mechanisms by which FHL1 mutations impact on FHL1 function and lead to alteration of muscle structure and function have not been deciphered yet. We generated here by Morpholino-modified antisense oligonucleotide-mediated gene knockd...

متن کامل

BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress.

RATIONALE A homozygous disruption or genetic mutation of the bag3 gene, a member of the Bcl-2-associated athanogene (BAG) family proteins, causes cardiomyopathy and myofibrillar myopathy that is characterized by myofibril and Z-disc disruption. However, the detailed disease mechanism is not yet fully understood. OBJECTIVE bag3(-/-) mice exhibit differences in the extent of muscle degeneration...

متن کامل

Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy

Regulators of skeletal muscle mass are of interest, given the morbidity and mortality of muscle atrophy and myopathy. Four-and-a-half LIM protein 1 (FHL1) is mutated in several human myopathies, including reducing-body myopathy (RBM). The normal function of FHL1 in muscle and how it causes myopathy remains unknown. We find that FHL1 transgenic expression in mouse skeletal muscle promotes hypert...

متن کامل

Transgenic mice expressing the myotilin T57I mutation unite the pathology associated with LGMD1A and MFM.

Myotilin is a muscle-specific Z-disc protein with putative roles in myofibril assembly and structural upkeep of the sarcomere. Several myotilin point mutations have been described in patients with limb-girdle muscular dystrophy type 1A (LGMD1A), myofibrillar myopathy (MFM), spheroid body myopathy (SBM), three similar adult-onset, progressive and autosomal dominant muscular dystrophies. To furth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2014